Indefinite Stochastic Lq Controls with Markovian Jumps in a Finite Time Horizon∗

نویسندگان

  • XUN LI
  • XUN YU ZHOU
چکیده

This paper is concerned with a stochastic linear–quadratic (LQ) control problem over a finite time horizon with Markovian jumps in the problem parameters. The problem is indefinite in that the cost weighting matrices for the state and control are allowed to be indefinite. A system of coupled generalized (differential) Riccati equations (CGREs) is introduced to cope with the indefiniteness of the problem. Specifically, it is proved that the solvability of the CGREs is sufficient for the well-posedness of the stochastic LQ problem. Moreover, it is shown that the solvability of the CGREs is necessary for the well-posedness of the stochastic LQ problem and the existence of optimal (feedback/open-loop) controls via the dynamic programming approach. An example is presented to illustrate the results established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati

A stochastic linear quadratic (LQ) control problem is indefinite when the cost weighting matrices for the state and the control are allowed to be indefinite. Indefinite stochastic LQ theory has been extensively developed and has found interesting applications in finance. However, there remains an outstanding open problem, which is to identify an appropriate Riccati-type equation whose solvabili...

متن کامل

Infinite Horizon LQ Zero-Sum Stochastic Differential Games with Markovian Jumps

This paper studies a class of continuous-time two person zero-sum stochastic differential games characterized by linear Itô’s differential equation with state-dependent noise and Markovian parameter jumps. Under the assumption of stochastic stabilizability, necessary and sufficient condition for the existence of the optimal control strategies is presented by means of a system of coupled algebra...

متن کامل

Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls

The optimal control problem in a finite time horizon with an indefinite quadratic cost function for a linear system subject to multiplicative noise on both the state and control can be solved via a constrained matrix differential Riccati equation. In this paper, we provide general necessary and sufficient conditions for the solvability of this generalized differential Riccati equation. Furtherm...

متن کامل

Indefinite LQ Control for Discrete-Time Stochastic Systems via Semidefinite Programming

This paper is concerned with a discrete-time indefinite stochastic LQ problem in an infinite-time horizon. A generalized stochastic algebraic Riccati equation GSARE that involves the MoorePenrose inverse of a matrix and a positive semidefinite constraint is introduced. We mainly use a semidefinite-programmingSDPbased approach to study corresponding problems. Several relations among SDP compleme...

متن کامل

Characterizing all optimal controls for an indefinite stochastic linear quadratic control problem

This paper is concerned with a stochastic linear quadratic (LQ) control problem in the infinite time horizon, with indefinite state and control weighting matrices in the cost function. It is shown that the solvability of this problem is equivalent to the existence of a so-called static stabilizing solution to a generalized algebraic Riccati equation. Moreover, another algebraic Riccati equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002